Bifurcation Analysis of an SIR Epidemic Model with the Contact Transmission Function
Bifurcation Analysis of an SIR Epidemic Model with the Contact Transmission Function
Blog Article
We consider an SIR endemic model in which the contact transmission stone calf puller function is related to the number of infected population.By theoretical analysis, it is shown that the model exhibits the bistability and undergoes saddle-node bifurcation, the Hopf bifurcation, and the Bogdanov-Takens bifurcation.Furthermore, we find that the threshold value of disease spreading will be increased, when the half-saturation thd deliclin? soap coefficient is more than zero, which means that it is an effective intervention policy adopted for disease spreading.
However, when the endemic equilibria exist, we find that the disease can be controlled as long as we let the initial values lie in the certain range by intervention policy.This will provide a theoretical basis for the prevention and control of disease.